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We develop a method of general perturbations mainly
applicable to satellite theory. The basic principle is the iter-
ative correction of the frequencies of the angular variables,
according to Lindstedt's technique. The solutions are devel-
oped as power series of a small parameter and are closely
related to those given by von Zeipel's method. They differ
in that they are obtained by direct integration of the differen-
tial equations of motion so that they can also be developed for
nonconservative systems., For a system with three degrees
of freedom, we give the differential equations for any order
of approximation and develop explicit relations up to the third

order in the small parameters.



1. INTRODUCTION

It is well known that the classical method of Poincaré and von Zeipel
applies to conservative Hamiltonian systems. Moreover, the construction of
a generating function for high-order perturbations may become very involved,
especially when we deal with short-period terms (Kozai 1962). The con-
struction of an algorithm suitable for automatic symbolic processing is not
a trivial task and has been developed only in certain problems and to a maxi-
mum of the second order. Another nontrivial task is the relation between
initial conditions and the element constants as defined by Brouwer (1959) and
Garfinkel (1959). In his doctoral dissertation, the author (1965) presented a
sketch of a direct evaluation of von Zeipel's series based on the work of
Poincaré (1893). Since that time, the need for a high-order solution and the
remarkable progress in automatic processing of algebraic symbols have
shown that such a method would have great advantages over the classical
ones. We shall deal initially with one-dimensional systems, in order to
explain better the process of solution. We then develop a theory for three-
dimensional systems. The generalization to a system with more than threeA
degrees of freedom is straightforward. The study of a system with one
degree of freedom has, in addition to other purposes, that of separating the
problem of convergence of series in a small parameter from that introduced
by small divisors. The applicability to automatic processing derives mostly
from the fact that we can obtain the equations thaf produce the terms corres-
ponding to the nth order of approximation. The operations needed for purely
analytic development are multiplication of Fourier's series and integration
of such series in time. For semianalytic development, we need also the
Fourier analysis of the disturbing function and its derivatives. All these
operations can be satisfactorily developed by any high-speed electronic
calculator. It should be noted that the general equations for von Zeipel's
method are much more cumbersome 'and, in general, represent systems of

partial differential equations (Giacaglia 1964, 1965).



2. ONE DEGREE OF FREEDOM

Although it is not strictly necessary, we will consider a Hamiltonian
system, and call £ the coordinate (angular variable) and L the generalized
associated momentum (action variable). The negative of the Hamiltonian

is given by
F = F(L, L) = F (L) +e (L, 2) (1)

where € is a constant dimensionless parameter defined in (0, 1), but usually

small compared with unity.

We suppose F to be analytic in the neighborhood of LO for IL - LOI < R
(where R is a given number), to be capable of being developed in a convergent
Fourier series in £, and to be periodic of period 2m in this variable. Further-

more, we suppose as usual that

2T
j FL,0)ae =0 ,
0

which can always be achieved by assimilation of the '"'secular' part of 3@ into
FO, which in general might depend one. This dependence is disregarded

altogether in the process, with no confusion in the final outcome.

The differential equations pertinent to F(L, {) are
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or, according to Eq. (1),

where

N(L) = - 51—9 . (4)

We consider the new variables

x=L—L0 s |XI<R

y=~L-w=1 - (vt+p) , (5)

where v = v(LO;e) is an unknown function of a constant LO’ which is related
to the initial conditions. Moreover, the function v(LO;e) is supposed to be

analytic in the neighborhood of ¢ = 0; that is, it can be developed in convergent

power series

2
v-v0+evl+e v2+... s (6)

where
Ve = Vi)

By hypothesis, we can write

?:Z[A.k(L) coskf + B (L) sinkl] ,

k#0

where the integer k takes all values from - woto + o, and A'k’ Bk are analytic

functions of L.



In terms of the new variables x and y, Eqs. (3) can be written

gz 2

Y4
-i’zN(L)'v(LO;G)-GgT:# . (7)
We have
%zj = k(-4 sink{ + B, cos kf)
k#0
%{f =Z (Al((l) cos ki + Bl(<l) sin k{) , (8)
k#0

where A_Ln) = dnA_k/dLn, and similar notation is applicable to other functions.

‘Hence, Egs. (7) can be written as

X=¢ ka[—A_k(LO + x) sin k(w + y) + Bk(LO + x) cos k(w + y)]
#0

y = N(L0 + x) - v(LO;e)

- € Z [A-Ll )(LO + x) cos k(w + y) + BS)(L0 + x) sin k(w + y)]
o (9)

The next step is the development of the right-hand members of Egs. (9)
in double Taylor's series, in the neighborhood of (Lo,w). We have

L+ x,0+ )= L &y g—nf.(L ©)
o OTY n! oL Y 3w 0’

n=0



and

n . .
d~  sin (k{) = (_l)n K2 sin (k£ - nz)
dln cos cos 2
Therefore, Egs. (9) become
o0 n
. } : 2 : n-m m
X = € Xn ’m(w: Lo) Y
n=0 m=0
o0 ) n
- n n-m m
y = - v(LO,e) + E a (LO)X - € E E Yn— , (w,LO)X s
n=0 n=0 m=0
(10)
where
_ 1 ~(n) _ 1 (n+l)
anlig) = or NLg) = -5 Fom W H(Ly) (11)

and X and Y are defined by the Fourier series
n-m, m n-m,m

< ) (-1 )mkm+l n
n-m, m Z n! m
k+#0

(n-m)
k

n

X [-A1(<

v _ Z )™ /n
n-m, m , n! m
k#0

—m)(LO) sin (kw - mJZT-) + B (LO) cos (kw - m%)]

(n-m+1)

X [A.f{n_m-!_l)(LO) cos (kw - m %) + By

(L) sin (ke - m%)] .

(12)



The right-hand members of Egs. (10) converge provided
5l = L - Lol< R M
Iy‘| = Iﬂ - (JJI <M

with a properly chosen positive quantity M. These requirements will be

met if x and y cén be defined as purely periodic functions of w, with bounded
coefficients. The method consists of constructing such functions, by
successive approximations, in the form of Fourier series. Systems of type
(10) have been considered by McMillan (1920), who studied the convergence
of solutions x,y that are power series ine. Because McMillan did not require
x and y to be periodic, he could only prove convergence for a finite interval
of time. Since we will show that x and y can be constructed as periodic
functions, it is possible to prove the convergence of their series representa-
tion, provided ¢ is small enough and some values of LO are excluded.

The proof follows the lines described by Moser (1967). We shall limit our-

selves to showing that it is possible to construct the formal series
v=v_+ev +ezv+ v, = v. (L)
0 1 2 k ko
XxX=ex, te Zx + =x (L _,w)
1 27 T R e

2.
y=ey1+e Yot eer Yk=yk(LO’w).'

If these series are substituted into Eqgs. (10), we obtain

) 0 n
ePx = ¢ X "

Z P 2: n-m, m
p=1 n=0 m=0

s had s, +...+s -ntm

% 1 n-m
s s
- 1 n-m
s.=1 s =1
1 n-m



® ® rl+. .tr  -m
X E Y. ve. Y. € m (12)
T T
- 1 m
r.=1 r =1
1 m
o0 00 0
Eep’;f=—éepv+zaen
p p n
p=1 p=1 n=1
e s sl+-...+sn-n
X E X, .. X € - [%(X — Y)]
1 °n
s,=1 s =1
1 n
(13)
where we have set Vo= 29 = - Fgl)(LO) and the expression [x(X — Y)] indicates

the right-hand member of Eq. (12) where the Y's are substituted for the X's.

By equating coefficients of the same powers of e in both sides of Eqgs.

(12) and (13), we obtain the differential equations for the unknowns Xyes Vs

Ve (k=1,2,3, ...). It follows immediately that
p-1 mn
x_ = E X E
) n-m, m
n=0 m=0 s.t...1s t+r.+...+r_=p-1
1 n-m 1 ° m
XS]_ cee X Y oee Vg (14)
n-m m
P
v = =V + a - I — 15
Vo o E 0 E xsl X [XP(X Y)] , (15)
n=1 Sl+' .+sn=p n

Wheresjil, rkZI(j=l, oo, n-m; k=1, ..., m)and forp>1, n=1,



In particular, we have
(1) p=1:

*1 = %o,0

yp=-vitax - Yo
Since XO 0 and YO o are purely periodic, the choice for vy is V) = 0. The
functions

Xl =‘1—}' J'XO,Odw

-1
Y1579 s(alxl =Yg, o) I

will then be purely periodic, with no constant term. In fact,

x, = 5 j(LO,w) dw == j{LO,m) (16)

and

9°F 2°F (L) f}( a‘j(L

v, = - j L) dw - —J—————— dw
8L 0
0 )
1 aZFo(Lo) 3(7 1 9 3?
v oL 0
0

or

]- 14
V1T o (? Fo v a—L> [Frrgpmw . (4

where it is to be noted that to a first-order approximation

—_ - — 7
v—v0+evl-—v0—-F0.



X = X %1t X, 1)

_ 2
Vo = mVptapXy tayx - ¥y g% - Yy 1Y)

The right-hand member of x, cannot contain terms independent of w. In

2
order to see this, we first note that

82 j(LO, w)

1,0 o 8L,

X

82 j(Lo,w)

0,1 52

X

and consider a particular argument 0 = .1-;03 in SL;(LO,w). Constant terms can

. . . 2 .
only arise from combinations cos~ 0 or sin” 6. We have

Sﬁe=acosG+bsin9

and therefore

_1 .
Xl_v(a cos © + b sin 0)

FII
- (0,18 1 -
vy = - 1’2+v 5T I{.(amne-bcose)
X, O=E(-a' sin 8 + b’ cos 6)
_ 32 -
XOI—-k(acos9+b51n9)

10



Therefore,

0) =—15(a cos 6 + b sin8)(- a’ sin 6 + b’ cos 6)

5

f—

k FII

2
v

+

(a sin @ - b cos 8)(a cos 8 + b sin 0)

+
<=l

(2’ sin ©® - b’ cos 6)(a cos 8 + b sin 6)

i'( FII
ZO[(aZ - bz) sin © cos © - ab cos 26]
v

k]

which proves our statement,

It follows that %55 defined by

x, = j(Xl, 0*1 + XO, 1Yl) do |,

is free from secular terms. We define

_ 2
Z*rrv2 = j (aZX1 - Yl,OXl - YO, lyl) dw |
0

and it is easily seen that each part of the integrand will contribute to vy

With such a definition of Vs the function

Y2=—11;s(-v+ax+ax2—Y x. - Y ) dw

27 2172 T % 1,071 0,171
€

will be free from secular terms. We note that, for a non-Hamiltonian sys-
tem, the right-hand member of x will in general contain constant terms
producing secular perturbations, that is, terms linear in time (or «). In

such cases, except for very special situations, the solution will converge only

for a limited interval of time,

11



(3) p= 3

. 2 2
3= Xy g%t Xo 1Vt Xy Xyt Xy g% X oY)

and

L] — 3 [ —
V3= - Vg + a X, + Zalex2 + a,x) - [x3(X Y)]

The task of showing that the right-hand member of }';3 contains no constant
terms follows the same reasoning we applied to the second-order solution.

For the general proof we refer to the literature (Giacaglia 1967).
From Eqgs. (14) and (15) we see that in general we can write

X X

o]
]

- Xn(LO:w; Xl’ 2: ¢ s ey n—l; Yl,YZ: LI ] Yl’l—l) (18)

e
1

= - vn+ a’lxn-l- Yn(LO’w; i Rl L Xn-l; Yi2¥ps = oo Yn-l)
(19)

Equation (18) gives X if X100 Ve (k=1,2,...,n-1) are known as functions of

LO and w. Moreover, if we know these functions, v is determined as

2m
2Ty =J Y do |, (20)
n n
0

and we then obtain Vo This completes the description of the solution by

recurrence. The series obtained, truncated at the nth stage, are

_ 2 3 ntl
v(n+l)—v0+e v2+e v3+...+e vn+1
— 2 n
X(n) —ex1+e x2+...+e Xn
2 n
Y(n) =eyl+e y2+.,.+e vV,

12



where the function L is included because, as is evident from Eqs. (20) and
(19), it does not require that we know X(n+l) and V(n+1)' To this order of
approximation, the final solution is given by

L =L _ +x

(n) 0 (n)
ﬂ(n) =v(n+1)t+f3+y(n) s (21)

and the frequency v is known to an approximation one order higher. Equations
(21) are implicit relations between the initial conditions L(0), £(0) and the
constants of integration LO’ B. More will be said about this in the next sec-

tion.
3. THREE DEGREES OF FREEDOM

In the subsequent development we will deal with a more general

Hamiltonian of the form
F = FO(LI’LZ’LS) + ¢ f(Ll,Lz, L3; £1,£2,£3; €)

and assume that 36 can be developed in convergent power series of e. Thus,

F=F (L) +eF (Lif)+ e Fo(lsf) + ... (22)

where }J and iZ indicate the triplets (Ll’ LZ’ L3) and (il,l £3), respectively.

23
The process to be developed is a generalization of what we did for one-

dimensional systems. Each Fp(-L’ vg“) can be written as

F (L, 4) = z : [A(pik,, kp, kyiL) cos (k£ + k2, + kg2 5)
kl’kZ’ k3
+ B(p;kl’kZ’k3;,]Ii\) sin (kli1 + kzlz + k31 3)] s (23)

13



wherep=1,2, ..., and Ikll + Ikzl + |k3| # 0. To shorten the notation,

we will write (23) as

and the dependence of A and B upon L is implicitly admitted. In the following

developments, WO (L (2), 3),

be substituted for L.

a triplet of constants of integration, will

The differential equations to be integrated are

f 9F oF *® oF
c 9 _ 1 2 2 _ P P
Li=egs. =<5, ¢ 52, 1t ‘Ze Y (24)
1 1 1 1
p=1
and
. o *® paF
1’. -5 E € 8_—:EL (25)
1
p=1

fori=1,2,3.

The transformation

14



gives

_ p OF
* =Z ¢ Bl
p=1 :
oF e p OF
YiT "% " 8L, ‘E:E oL, (26)
i = i
p=1
The functions
oF |
5T, - Ni(D)
1
OF
sr2= 2 :ki[- A(pk) sink - £ + B(psk) cos k- £]
1
k
oF 5
—— 57~ [Alp;k) cos k+ £ + B(pik) sink - £] ,
k

i=1,2,3;p=1,2,

are to be developed in Taylor's series in the neighborhood of (&O’w‘ We have

the following general relation:

n

E : 1 ) 9

flx, + x) = ———(x —_—+ x ———+) f(x) |,
w0 n! 1 8x01 2 8x02 s O
which, applied to the above functions, gives

N(L +x)"§—‘ 5—‘ Y Z(l). i xill:xizzx33 s 27)

n=0 13—0 12-

15



where i, = n - 1

AC I =1—,(.n> (n.'13> - - -
119513 T 13 ) 0'1 .. 0'2 __0'3

From now on we will drop the superscript 0; that is, we will write MI&' instead

of LO. Therefore,
wa

. F
20 oL ()("9) : (28)
i, i,,1 n! \i i i i i ’
177273 3 2 8L.8L18L28L3
i 1 2 3
where i1 =mn-i;- i,
Moreover,
n-m-j m-A
OF %) n n-m I3 m 3
P (i)
o, L L / Z Z Z Xp;J'i,J'Z,j:5;11,12,£3
n=0 m=0 _]3=0 JZ=O £3=0 £2=0
i; 3, 3 ll y £
X %" x, X (29)
1 2 *3 Y1 Y2 Y3

where

I}
B
5

16



and

. k .

(i) 2 ; i(n)(n—m <n-m-3) m\ /m-4
XL = - . .73 3y ym
P,JI:JZ,J3,J?1,£2,E3 - n! \m i3 ip <£3><£2 (-1)

X kl k2 k3
n-m
X 9 - A'(p,k). sin(k-m-m—g)
1o %2 073 .
aLl BLZ 0 3

n-m .
42 ng’“‘]g) — cos (k- w - m%) . (30)
1 2 3 -
BL1 BLZ 8L3
Finally,
8F£ 8FJg
5T, - | XY (31)
i i
where

(i) z : 1 (n) (n-m) (n-m—j) m)\ (m-4 >

Y., L. = — . .3 3 m

p;Jl:J23J3’£l:£2:‘e3 ” n! \m J3 ‘]2 13 12 (—1)
WA-

2 °3.72.73
X kl kz k3
n-m+1 .
X 8 A(p,& — cos (k. w-m%)
1,72 .93 -

17



n-m+1

oy Bl k- w-m D) (32)
Jl JZ J3 W v 2
8Li 8L1 8L2 8L3
and (jl’ ﬂl) are defined as before.
We now introduce the series
0
X. = € E es-l X(S)
i i
s=1
(o0}
- r-1 (r)
y; =€ z € Vi , (33)
=1

which are to be substituted into the above developments and then into differ-

ential Eq. (26). The result is

o0 o0 m
o (i) p+1'l
! : . Piipspsdgilysdysdy

[¢e] o0 0 0 co (o] [oo]
a,=1 ajl=l B,=1 5j2=1 v,=1 v, =1 A =1

J3

18



and

\.4.

+...4a, P+, P, Yy, Y.
a 0y HBtoL ARy Y ey,

] 1 2 3
€

)\1+...+)\£ +H1+"'+H£ +vl+...+v£ -n
X ¢ 1 2 3
@) ) ey B Oy
X x 1 % 1 2 x 1 % 3
1 1 * ) 3 3
A
op o M) e ) ey )
X y y cee y y - V.
Y1 1 2 2 3 3
00 ) n n—i3
- € E ek_l v(k) + E E Z(i) e?
i i, ,i,,1
- - - b 1’ 2: 3
=1 n=0 13—0 12—0
o0 o0 0 0 o0 (e}
DIRTD VD IRND DD DD
a. =1 a. =1 B,=1 B. =1 vy,=1 y. =1
1 1l 1 12 1 13
0,1+. +0,.l-l~ﬁ1+...+£35L +y1+...+yié-n
X €
X x X X, X b4
1 2 *2 3 3

19
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where, as already defined,

jl=n-m~j2-j3 s

Equations (34) and (35), despite the cumbersome aspect due to their complete

generality, give simple relations for the equations that define ng) y(k)

2 i 2

k=1,2, ..., by recurrence. These are readily found to be
N-p n n-m %72 m m-£4
AR E z , z : 2 : x{ IR,
i p J12d0sdq3 5 45,
p=1 n=q m=0 j;=0 j2=0 £3=O 122:0 SR

x 2

al+...-l~c1,j +ﬁl+...+{3j +yl+...+\1j +)\1+...+);1 +|¢1+...+u£ tv. +... 4V =N-_-p

1 2 3 1 2 3
e @0 e P oy ) e B )
X xX X X, xX xX
1 1 2 % 3 R ‘g T Yo
, ) (v, )
y Hﬂz (vl) v£3
YZ Y3 P Y3 > (36)

a.+... +ail+ﬁl+. . +{3i2+yl+. .o +\/13=N

PV x - v

3

(37)

20



where we have already defined

. oF
(0) _ (i) _ _ 0
i =24 0,0 Ny = - oL, (38)
and
11 =n - 12 - 13 3
jp=n-m=-J; -z
fi=m -4, -4,
Next, we give Eqgs. (36) and (37) for N = 1,2, 3 (third-order solution).
First Order.
(1) _ (i)
X = X1.0,0,00,0,0 °
-(1) _ (1) (i) (1) (i) (1) (1) (1)
Vi T T2 0 0% Y20 1,0% T%0,0,1 %3
(i)
~¥1,0,0,0:0,0,0 °
so that vgl) =0(i=1,2,3),
OF OF
(1) _ "1 (1) _ 1
% T, X" T ) dt (39)
1 1
and
3 .2
. S 2Ty
Yi 8L, 6L, "k AL,
k=1 1 1



oF

(1) 1 )
ZEL 5L Ssa‘ﬂk dtdt—-a—L—iSFldt . (40)

Up to the first order,

v, = v§0)+ev!l) v(o)

i i i i

Second Order,.

. (2) § : (1) <Dy z : (i) (1)
X X X
lk’ 2k’63k’0 0,0 K - 1;0, 0,0;61k,6Zk 63k Yk

Xz;o, 0,0;0, 0,0 (40)
2
(2) _ ZZ (2) Zz(l) (1)
i = 6.1, , ,26.. Tk
! o1 1k %21 03k =1 11 20210 20 3¢
(1) (1) (1) ) (1) (1), () (1) (1)
TZ211,0%1 % leo 1% %3 Zoll 1 %2 %3
e R (41)
.(2)

As was done for the one-dimensional case, we can easily show that X, is
free from constant terms; that is, xgz) is purely periodic., We can obtain
the constant v(z) by averaging the last five expressions in the right-hand

member of y( ) overw, from 0 to 2w,

22



Third Order.

3

§ : «(2) (i) (2)
+ X v

k—l[ ;0 1k’ Zk’63k’0 0,0 "k 150, 0, Oélk’ 2k’63k k

X(1) (1) X(1) (l)

L; 2611{’ 262k,263k,0 0,0 *k 1;0,0,0; 261k’ 2621{’ 2631{ Yk

4 x( A1) (1), () 1) (D)

y y
131,0,056,,,6,,,65, 1 Yk 130,1, 038 ,,6,,,8 5, *2 Yk

s x() LD (1), (D) (1)

y
130,0,136,,,6,,,8, ™3 Yk 238146 5,,83,30,0,0 *k

(1) (1)
T X5.0,0,055. ,6..,6 Vk]

1k’ "2k’ "3k

(i) (1) (1) (i) (1) (1)
*X151,1,0:0,0,0 %1 %2 T %11,0,150,0,0 %1 *3

(1) (1) () (i) (1) (1)
* X1.0,1,1;0,0,0%2 *3 T %1.0,0,0;1,1,071

(i) (1) (1) (1) (1) (1)
+X11000101V V3t X1.0,0,00,1,1 Y2 Y3

; x{B (42)

3;0,0,0;0,0,0

3

- (3) (i) (3) (1) (1) _(2)
y. ' = + Z + Z 2
. Z [ lk’ Zk’ 63k "k 26 1k’ 262k’ 2631{ & Tk

k=

3

(i) (1)] (i) [() 2) . _(2) (1)]

+ Z + Z +
38 15385538 51 *x 11,011 %2 "X %

23



\ (0 [Xu) NOMNG Xgl)] \ ) [X;_” 20 1 502) x(l)]

1,0,1]% 0,1,1 2 %3
. 2 . 2 . 2
(i) (1)™ _(1) (i) (1) _(1) (1) (1™ _(1)
T2 0% ¥ Y21 0% % Y2y 0,1%1 %3

. 2 . 2 . 2
(1) (1) (1) (i) (1™ _(1) (1) (1) (1)
+le,o,2X1 X3 +Zol,z:,l X, 1 %3 +Zol,1,zxz X3

+ Z X(ll) X(Zl) xgl) - [5423)(}(_’ )] . (43)

The above relations give a complete third-order solution with all infor-
mation needed to compute the frequencies v.up toa fourth-order accuracy
in the small parameter. From simple inspection we can write the differential
equations for }-{gn)’ _;r(in) for any value of n. But the important point is that
such equations as (36) and (37) can easily be developed by an electronic com-
puter, either in algebraic form or in numerical form. In fact, since the
solution of order n - 1 gives the frequency up to order n, the right-hand
members of Egs. (36) and (37) can be harmonically analyzed by numerical
means to give the solution correct to the nth order in the form of Fourier

series with numerical coefficients. This, of course, implies a knowledge

of the constants-w%\.o, B In the next section we discuss some of these matters.
4, SEMINUMERICAL APPROACH

In several problems of orbit determination, for example, those involving
artificial satellites, it is not possible nor practical to develop the disturbing
function analytically in terms of the mean anomaly of the disturbed body,
since this would require series expansions in the eccentricity and the sine of
the inclination, which might not be small with respect to unity., This,
however, does not mean that a numerical Fourier analysis of the disturbing
function cannot be obtained. Such trigonometric series with numerical

coefficients can usually be computed, with little effort, to any desired degree
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of precision. In order to apply the theory described in this paper to problems
involving high eccentricity and inclination, we must consider F(wII.JVO,Vca) given
by a trigonometric series, with numerical coefficients. The functions

F (LO w) are then selected by inspection of those coefficients. For particu-
lar values of L?, Lg, 30 (31, [52, [53, which define the initial conditions,

the solution requires a process of differential orbit improvement.

The series solutions given by this method can be represented as

.—v(L ;e)t + B, +Z Z |:A(1) )COS(}E,';&)«)

p=1 [k|<M
+ BS}ELO) sin (k - 33)] (44)
N
= L, +Zep Z \:C;l,)k L") cos ( w)
p=1 |k|=M -
~ T p
t D;i;)h(Lo) sin k - }3] , (45)

where w, = vit + Bi’ and N is related to the precision achieved by iteration.

At t= 0, Eqgs. (44) and (45) reduce to

N
o =pr s P DL [l cos e p)
p=1 l Mp M

=
[N

¥ BS;)}E(I:O) sin (k - E)] (46)
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N
L.(0)= L) + Ze P Z [c;i;)k(;:o) cos (i - B)
p=1 | x| =M ~

+ D) (%) sin (k- p)} .

wA

and for ¢ = 0, {3? = 2,(0), L?O

= Li(O), which gives a zero-order solution to
Bi’ Lg in terms of the initial conditions. The (n+1)th order is obtained by

recurrence from the inversion of Eqs. (46) and (47); that is,

N

(nt+1) _ ) (i) On !

By = 40 'Ze Z [Ap;k(ii ) cos (k- B7)
p=1 |'k|SMp -

+ B;i;)&{’\(kon) sin (k - En)] (48)

N
On _ P z: (i) ;; On .1
L)%= 1L.(0) - z ¢ [Cp;k(\l; ) cos (k 8 )
p=1 k|=M -
wh P

+ D;i%(wldon) sin (k - En)] . (49)

Nevertheless, this process of iteration requires ti’lat we know the series
solutions (44) and (45), which in turn can only be obtained after the numerical
values of MI:JO, B are introduced. It is at this stage that a differential correc-
tion scheme u\;;tangles the situation, assuming, of course, ¢ to be reasonably
small, Thus, given the initial conditions [“I_:(O), 2(0)], we can assume the
approximate relation Lg = Li(O), 61 = 11(0) and construct an approximate
orbit given by Eqs. (44) and (45). Once these series are known, better
values for L? and ﬁi can be found by one iteration of Eqgs. (48) and (49). A
new orbit is then obtained in the form given again by Eqgs. (44) and (45). The
iteration of such a process for small e will usually converge to the desired

accuracy.

26



Suppose, therefore, we have provisional or definitive values of L? and
Bi. The functions 8F0/8Li, an/aLi, an/Mi (p=1,2,3,..., N) and their
partial derivatives up to order N can then be reduced to Fourier series with

numerical coefficients. Let

oF .
( )( "‘1> pn-e- [:aLﬁ 8L3 8L(§ = Millza_ﬁ’gla 3

0
1 (n) (n-a) (n—a—ﬁ) (a) <a -6) o™ BFP(% » %)
nt\e/ \ P Y SN\ R/ gpp-a-Pey oL aLP 020 M gt g | 2%

1 3 99

W,
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Al
'Z<pkna B-v, v, Bia-6-p,6 ,p OS5 K2

k
+ B(i) in k
P§k5n‘a'f3'\(,(l,ﬁ§a‘6“#:6,H Sln"w‘. Vs'e‘ ’
and
n oF (LY, o)
1 <n><n-a) (n-a—ﬁ) (o.) a-56 9 pl 2
n! \a B v &) ( [ n-a-pB-y v B o a-0-p o m, O] 0L,
E)Ll 8L2 8L3 awl acoz 8w3 i

_ (i)
- Z (C:p;k;n—a—ﬁ—v,a,ﬁ;a-é-p,a,p cos k-
k ww

(i) o
* Dp ikin-a-B-v,a,B; 0,-6-“,6,”511'1\.15. w2

The numbers A, B, C, D are readily related to the coefficients of the series
X, Y defined by relations (30) and (32), and the numbers M give the values

of the functions Z. In fact,

(i) _ (i)
Mnl-a-ﬁ,ﬁ,a Zn-a—ﬁ,ﬁ,a ?

27



Z A(i) ' cos k* w
<p;h;n'a-ﬁ—v,v,ﬁ;a-ﬁ-uﬁ,u s 8
k
WA

(i) o
! Bp:&sjn-a—ﬁ-v,Y,ﬁ;a-é-p.,é,u sink - @

= x(d
p;n-a~B-y,y,B;a-6-p,0,

and

Z (i)

(Cp?li?n-a-ﬁ-v,v,6;a-5-u,6,H cos k- @
k

W~

(i) . )
¥ Dp:h;n-a-ﬁ-v,v,B;a-é-u,é,p sink - o

= ¢
p;n-a-B-vy,y,B0-8-p,5,

In the above relations we must have

=
1
o
—
-
oo
=}
1
o

p=20,1,2, ..., a -9

and the maximum value of I,l.il’ Mp’ must be decided according to the precision

sought.
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It is worthwhile to note that the iteration from the initial conditions to
the constants of integration is also needed in the classical theories generated
by von Zeipel's method. The essential differences are that we are able here
to write rapidly the equations for any order of approximation and that we can
perform a numerical harmonic analysis of the right-hand members of the
differential equations of motion, however complicated they might be, using
as many points as necessary to reach a prescribed precision in the final

solution,

We have made no distinction between short-periodic, long-periodic, and
secular perturbations, which are treated globally by the method described.
However, such a distinction is always possible by simple elimination of the

terms not needed in the Fourier series,

In conclusion, we emphasize that if one is ready to elaborate long
trigonometric series, either by hand or by computer, either numerically or
analytically, the theory we have described can be extended in a simple and

systematic way to any order of approximation.
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